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ABSTRACT 

Investigating spatial relationships among fuels, wildfire severity, and post-fire invasion by exotic plant species through link­
age of multiphase sampling design and multiscale nested sampling field plots, pre- and post-fire, can be accomplished by inte­
grating spatial information with spatial statistical models. This technique provides useful information and tools for describing 
ecological and environmental characteristics, including landscape-scale fire regimes, invasive plants, and hotspots of diversi­
ty (native and exotic plants) for the Cerro Grande fire site, Los Alamos, New Mexico. To predict the distribution, presence, 
and patterns of native and exotic species, we used modeling of large- and small-scale variability by integrating field data and 
spatial information (eight bands of Landsat Thematic Mapper [TM] data, six derived vegetation indices, six bands of tasseled 
cap transformations, elevation, slope, aspect) and spatial statistics. We present the results of trend surface models that describe 
the large-scale spatial variability using stepwise multiple regressions based on the Ordinary Least Squares (OLS) method. 
Models with small variance were selected. In addition, the residuals from the trend surface model based on the OLS estimates 
were modeled using ordinary kriging for modeling small-scale variability based on a Gaussian semi-variogram. The final sur­
faces were obtained by combining two models (the trend surface based on the OLS and the kriging surface of residuals). All 
models were selected based on the lowest values of standard errors, modified Akaike’s Information Criterion (AICC) statis­
tics, and high R2. For large-scale spatial variability models using the OLS procedure, R2 values ranged from 10.04% to 58.6% 
and all variables were significant at α < 0.05 level. When the kriging model was added with the OLS model, R2 values ranged 
from 60% to 84%. This new technique will help natural resource management teams to identify areas vulnerable to invasion 
by exotic plant species and predict their consequent potential for wildfire. 
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INTRODUCTION graphic Information Systems [GIS]) using spatial 

Synergistic interactions and positive feedbacks statistics provides useful tools for assessing landscape-

among fuels, extreme wildfire behavior, and exotic scale structure of forest and rangelands (Kalkhan et al. 

species invasions are increasingly recognized as major 2000, 2001; Chong et al. 2001). In addition, the abili­

threats to the structure and function of natural ecosys- ty to model the small-scale variability in landscape 

tems (Mack and D’Antonio 1998). We are investigat- characteristics requires the generation of full-coverage 

ing spatial relationships among fuels, wildfire severi- maps depicting characteristics measured in the field 

ty, post-fire invasion by exotic plant species, and other (Gown et al. 1994). Gown et al. (1994) point out that, 

ecological–environmental characteristics through the while many spatial data sets describing land character-

linkage of multiphase design (Figure 1), multiscale istics have proven reliable for macro-scale ecological 
field plots (Modified-Whittaker; Stohlgren et al. 1995, monitoring, these relatively coarse-scale data fall short 
1998) (Figure 2), and pre- and post-fire remote sens- in providing the precision required by more refined 
ing imagery using spatial models (Kalkhan et al. 1998, ecosystem resource models. 
2001; Kalkhan and Stohlgren 2000). The integration Reich et al. (1999) described a model based on the 
of spatial information (remote sensing data, Geo- process using stepwise regression, trend surface anal­
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Figure 1. Multiphase sampling design (modified from 
Kalkhan et al. 1998). 

ysis of geographical variables (e.g., elevation, slope, 
and aspect), and measures of local taxa to evaluate 
large-scale spatial variability. This model, described 
by Reich and Bravo (1999), was used in this study and 
is defined as: 

(1) 

where βij are the regression coefficients associated 
with the trend surface component of the model, are 
the regression coefficients associated with the q auxil­
iary variables, yk0, are available as a coverage in the 
GIS database, and η0 is the error term which may or 
may not be spatially correlated with its neighbors 
(Kallas 1997, Metzger 1997). 
Spatial statistics and spatial information provide a 

means to develop spatial models that can be used to 
correlate coarse-scale geographical data with field 
measurements of biotic variables. Here we present our 
spatial modeling process and preliminary predictive 
models of native and exotic plant distributions for the 
2000 Cerro Grande fire, Los Alamos, New Mexico. 
Our research program objectives included the inter­

polation of plot-level information to the landscape-
scale with generalized predictive spatial statistical 

Figure 2. Modified-Whittaker nested sampling design 
(modified from Stohlgren et al. 1995, 1998). 

models derived from remotely sensed data, GIS, and 
field data, allowing broad examination and conclu­
sions regarding the interactions among fuels, wildfire, 
and exotic plants. The uniqueness of this approach is 
the combination of multiphase sampling design (i.e., 
double sampling; Figure 1) (Kalkhan et al. 1998) and 
multiscale nested plot designs (Modified-Whittaker; 
Stohlgren et al. 1995, 1998). The main plot dimension 
was 20 × 50 m (1,000 m2) with ten 0.5 × 2-m (1-m2) 
subplots, two 2 × 5-m (10-m2) subplots in opposite 
corners, and a 5 × 20-m (100-m2) subplot in the plot 
center (Figure 2). Both approaches allow us to per­
form intensive unbiased sampling surveys at certain 
plot levels which can help to reduce the cost of sam­
pling surveys and improve the efficiency of sampling 
design. The specific objective of this paper is to 
develop a predictive spatial statistical model for 
describing large- and small-scale variability of plant 
species richness (native and exotic species) in relation 
to the Cerro Grande fire. 
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Table 1. Summary statistics for all variables used in developing spatial statistical models for the Cerro Grande fire, 
Los Alamos, New Mexico, 2001. 

Variable Minimum Median Mean Maximum 

Total plant species 14 44 51 78 
Native plant species 8 31 40 57 
Exotic plant species 0 4 4.1 9 
Native cover (%) 4.2 22.3 25.9 76.3 
Exotic cover (%) 0 0.6 1.3 7.9 
Elevation 1972 2266 2356 3023 
Slope 1.4 10.02 12.46 32.5 
Absolute aspect 5.2 80 86.9 180 
Thematic Mapper band 

1  60  80  81.3 116 
2  45  65  66.3 106 
3  38  71  73.5 131 
4  29  48  49.9 111 
5  43  100 98.9 168 
6 112 188 185.1 222 
7  26  92  92.2 169 
8  34  47  49.2 85 

Band ratio 
(5/4) 63 127 133.5 191 
(4/3) 1 1 1.038 2 
(3/1) 85 85 88.2 170 
(4–3) 22 42 54.9 184 

NDVIa 0 1 0.620 1 
TNDVIb 0 0 0.4975 115 
Tassel Cap 

Band 1 111 168 173.4 265 
Band 2 –80 –53 –49.8 3 
Band 3 –83 –41 38.7 7 
Band 4 19 27 26.7 34 
Band 5 –71 –39 –37.7 –12 
Band 6 –20 –15 –15.2 –11 

a NDVI = Normalized Difference Vegetation Index.

b TNDVI = Transformed Normalized Difference Vegetation Index.


STUDY SITE 

The Cerro Grande fire site is located near Los Alam­
os, New Mexico. Elevation ranges from 1,932 m to 
3,200 m. The fire site was well suited for our study 
because it included multiple fuel types, exhibited a 
wide range of burn severities, and involved pre-fire 
fuel treatments. In addition, existing digital spatial 
information was abundant and available, and there was 
potential for cooperation with other research groups 
that have complementary interests.We completed field 
sampling for our study site in August 2001. The Cerro 
Grande fire began as a prescribed fuel treatment by 
Bandelier National Monument, Los Alamos, New 
Mexico, on 4 May 2000. The fire escaped control and 
was declared a wildfire on 5 May 2000. The fire was 
contained on 24 May after burning about 19,300 ha of 
lands managed by seven different agencies, including 

the town of Los Alamos. However, 60% of the fire area 
burned 10–11 May 2000, and 60% of the fire was on 
the Española District of the Santa Fe National Forest 
(Burned Area Emergency Rehabilitation [BAER] Team 
2000). Initial remotely sensed estimates of burn sever­
ity were classified as high (35%), moderate (9%), and 
low (56%). Elevations in sampled areas ranged from 
2,000 m to 3,000 m and included pinyon–juniper 
woodlands, ponderosa pine (Pinus ponderosa) forests, 
and mixed-conifer forests. 

METHODS 

Sampling Design 

We employed a stratified random sampling design to 
locate 66 multiscale nested plots (Modified-Whittaker; 
Stohlgren et al. 1995, 1998) (Figure 2) within areas 
burned on 10–11 May 2000 in the Santa Fe National 
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Forest, and an additional 13 unburned plots within 300 
m of the fire perimeter. Burned-area strata included 
vegetation type (pinyon–juniper woodland, ponderosa 
pine forest, and mixed-conifer forest), BAER fire 
severity classification (high, low, moderate), aspect 
(north, south), and pre-fire fuel treatment (untreated, 
prescribed burn, thin only, thin followed by prescribed 
burn). Unburned strata included aspect (north, south) 
and elevation (<2,500 m; >2,500 m). At least 3 plots 
were randomly located in each stratum. 

Data Analysis 

Data collected from each plot included measure­
ments related to pre-fire stand condition, refined esti­
mates of fire severity, plant species cover and richness, 
and measurements related to post-fire fuel flammabil­
ity. For the vegetation data, we used the Modified-
Whittaker multiscale nested plots design (Figure 2). 
The Global Positioning System was used to document 
the locations of the plots and incorporate the field data 
directly into the GIS. Five soil samples (depth 10–20 
cm) were taken and pooled from each 20 × 50-m veg­
etation plot. These five samples were located in each 
of the corners of each Modified-Whittaker plot, as 
well as in the plot center. Samples were used for total 
carbon (C), nitrogen (N), and soil texture analyses. 
Data used in modeling included eight bands of Land-
sat TM Data, six different vegetation indices, six 
bands of transformed tasseled cap indices (using 
IMAGINE 8.4 [ERDAS 2000]), topographic derived 
data (elevation, slope, aspect; ArcInfo 7.4 [ESRI 
2000]), and vegetation data (total number of plant 
species, number of native plant species, number of 
exotic plant species, and percent cover for total, 
native, and exotic species). All spatial information 
from remotely sensed data and GIS layers were con­
verted to a grid using ArcInfo 7.4 (ESRI 2000), and a 
program written in ARC Macro Language (ESRI 
2000) was used to extract the 79 data points (field plot 
locations) with respect to their Universal Transverse 
Mercator X- and Y-coordinates within the study area. 
All data were then used for the development of the 
spatial models using S-Plus software (MathSoft 2000). 
Soil data were collected but are not discussed here. 

Spatial Analysis 

In this paper we used the same approach by Kalkhan 
and Stohlgren (2000) by using the cross-correlation 
statistic to test the null hypothesis of no spatial cross-
correlation among all pairwise combinations of vegeta­
tion variables and topographic characteristics (Table 1). 
In calculating the cross-correlation statistic (IYZ), we 

used the inverse distance between sample plots as a 
weighting factor to give more weight to values in the 
closest sample plots and less to those in plots that are 
farthest away. The null hypotheses of no spatial cross-
correlation were rejected at P < 0.05. Moran's I, which 
is a special case of the cross-correlation statistic IYZ 
(Czaplewski and Reich 1993), was used to calculate the 
spatial auto-correlation associated with each of the vari­
ables used in this study (Table 1). Cliff and Ord (1981) 
showed that IYZ ranges from –1 to +1, although it can 
exceed these limits with certain types of spatial matri­
ces. Data distributions that were strongly skewed were 
transformed prior to analysis. Aspect data were trans­
formed using the absolute value from due south (180°; 
high solar radiation) (Kalkhan and Stohlgren 2000). 

Spatial Modeling 

Stepwise multiple regression analysis was used first 
to identify the best linear combination of independent 
variables. It also allows us to explore the variation in 
predicting total, exotic, and native plant species rich­
ness as a function of the eight TM bands, six derived 
vegetation indices, six tasseled cap transformation 
indices, slope, aspect, and elevation. The selected 
independent variables were used in the OLS procedure 
to describe large-scale variability estimates. 
OLS estimators were used to fit the model if the 

variable of interest had a linear relationship with the 
geographical coordinates of the sample plots, the dig­
ital number value of any of the Landsat TM bands, and 
the topographic data. In addition, the least squares 
method fits a continuous, univariate response as a lin­
ear function of the predicted variable. This trend sur­
face model represented continuous first-order spatial 
variation. AIC (Brockwell and Davis 1991, Akaike 
1997) was used as a guide in selecting the number of 
model parameters to include in the regression model, 
where 

AIC = –2(max log likelihood) + 2(number of parameters) (2) 

When maximum likelihood is used as a criterion for 
selecting between models of different orders, there is the 
possibility of finding another model with equal or greater 
likelihood by increasing the number of parameters (Met­
zger 1997). Therefore, the AIC allows for a penalty for 
each increase in the number of parameters. Using this 
criterion, we considered a model with a smaller AIC to 
have a better fit. While the model was kept as simplistic 
as possible, a more complex model could be used if war­
ranted. In this paper, we used the AICC, which is a mod­
ification model of AIC (Reich et al. 1999). 
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Table 2. Summary statistics for large- and small-scale variability models for predicting total, native, and exotic plant 
species richness and their percent cover within the Cerro Grande fire, Los Alamos, New Mexico, 2001. 

Large-scale variability 
(OLS model)a 

Large- and small-scale variability 
(OLS and kriging–variogram model)b 

Variable R2 (%) SE AICCc Model R2 (%) SE 

Total plant species 
Native plant species 
Exotic plant species 
Probability of exotic 

species 
Total plant cover (%) 
Native plant cover (%) 
Exotic plant cover (%) 

14.1 
43.7 
58.2 
58.6 

43.6 
46.2 
10.1 

11.1 
8.6 
1.6 
1.97 

13.3 
13.3 

0.5 

610.3 
571.6 
309.5 
342.1 

639.6 
639.9 
125.2 

Gaussian 
Gaussian 
Gaussian 
No spatial auto-correlation 

with residuals 
Gaussian 
Gaussian 
No spatial auto-correlation 

with residuals 

63.9 
60.0 
60.9 

81.6 
84.4 

7.0 
7.0 
1.5 

7.3 
6.9 

a P significant at α < 0.05 for the OLS (Ordinary Least Squares) models.

b P significant at α < 0.01 for the variogram models.

c AICC = Modified Akaike’s Information Criterion.


In the next stage of the model building process, the 
residuals from the trend surface models were analyzed 
for spatial dependencies. This was accomplished using 
spatial auto-correlation and cross-correlation statistics. 
If the residuals were cross-correlated with other vari­
ables, we could use co-kriging to interpolate the resid­
uals. However, if the residuals were not cross-correlat­
ed, we used ordinary kriging. Finally, the weights 
associated with the kriging and co-kriging models 
were estimated as a function of the spatial continuity 
of the data (Isaaks and Srivastiva 1989). This estima­
tion can be accomplished using a sample variogram to 
describe spatial continuity. With spatial data, the vari­
ation of the samples generally changes with distance. 
In other words, the variogram is a measure of how the 
variance changes with distance. The variogram and 
cross-variogram models used in this analysis were 
considered “basic” models, meaning they are simple 
and isotropic (Reich et al. 1999). They include Gaus­
sian, spherical, and exponential models (see Isaaks 
and Srivastiva 1989). Prior to estimating the sample 
variogram and cross-variogram, the data were rescaled 
by dividing the individual variables and the residuals 
by their respective maximum values. This was neces­
sary to maintain numerical stability (Isaaks and Sri­
vastiva 1989) by eliminating any differences in the 
magnitude of the variables without altering the solu­
tion. Although this was not necessary for kriging, it 
was important in co-kriging (Isaaks and Srivastiva 
1989, Metzger 1997). 

RESULTS 

We used 79 data points (based on Modified-Whit­
taker nested plots of 1,000 m2) to represent different 

variables that were extracted from Landsat TM data, 
topographic data, and vegetation characteristics (Table 
1). Total plant species richness, including species of 
unknown origin and taxa that could not be identified, 
ranged from 14 to 78 per plot. Typically, nonnative 
species represented >10% of the total species at a site 
and about 5% of the foliar cover (Table 1). 

Spatial Relationships 

The preliminary results for our field data using 
Moran’s I (Moran 1948, Mantel 1967) and the bivari­
ate cross correlation-statistic, IYZ (Czaplewski and 
Reich 1993, Bonham et al. 1995) to test for spatial 
auto-correlation and cross-correlation with residuals 
suggested that, at large-scales, the probabilities of 
presence and absence of exotic plant species and their 
percent cover were spatially independent throughout 
the study site (Table 2). That is, the spatial relation­
ships were not statistically significant. Native species 
richness was not independent (Kalkhan and Stohlgren 
2000). However, these results may be different for indi­
vidual plant species (Kalkhan et al. 2000). In general, 
large-scale patterns of species distribution were con­
trolled by topographic factors such as elevation, aspect, 
and slope with complex spatial patterns. This may 
explain why negative spatial auto-correlation and cross-
correlation resulted when large-scale plots were used 
(Kalkhan et al. 2000). These results may have been dif­
ferent if individual native or exotic plant species had 
been used in the analysis (Kalkhan et al. 2000). 

Spatial Statistical Model 

The results of modeling the large-scale and small-
scale variability in predicting total, native, and exotic 
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Figure 3. Predicted spatial statistical map (based on 
30-m resolution) for total plant species richness 
(based on 1,000 m2/plot) for the Cerro Grande fire, Los 
Alamos, New Mexico, 2001. Model significant vari­
ables: elevation, slope, vegetation index (Transformed 
Normalized Difference Vegetation Index), and tas­
seled cap band 1 with R2 = 64%. 

species richness and percent cover of exotic and native 
plant species within the Cerro Grande fire site are 
shown in Table 2. Models were developed for large-
scale variability of the total number of plants (both 
native and exotic species) and percent plant cover 
(total, native, and exotic). The trend surface models 

Figure 5. Predicted standard errors (uncertainty) map 
(based on 30-m resolution) for exotic plant species 
richness (based on 1,000 m2/plot) for the Cerro Grande 
fire, Los Alamos, New Mexico, 2001. Model significant 
variables: Universal Transverse Mercator (UTM)-X, 
UTM-Y, number of native plants, vegetation indices 
(band ratio 5/4, 4/3, and Normalized Difference Vege­
tation Index), tasseled cap band 5 with R2 = 58%. 

Figure 4. Predicted spatial statistical map (based on 
30-m resolution) for exotic plant species richness 
(based on 1,000 m2/plot) for the Cerro Grande fire, Los 
Alamos, New Mexico, 2001. Model significant vari­
ables: Universal Transverse Mercator (UTM)-X, UTM­
Y, number of native plants, vegetation indices (band 
ratio 5/4, 4/3, and Normalized Difference Vegetation 
Index), tasseled cap band 5 with R2 = 58%. 

identified in this study used stepwise multiple regres­
sions that had R2 values ranging from 10.04% to 
58.6% and all variables were significant at α < 0.05. 
Small-scale variability models were used to examine 

the spatial continuity of variability and were devel­
oped using ordinary kriging based on the Gaussian 
semi-variogram model which was based on the AICC 
(Table 2). Model parameters were estimated using 
weighted least squares (Cressie 1985). The residuals 
were also analyzed for spatial auto-correlation and 
cross-correlation (Czaplewski and Reich 1993, Reich 
et al. 1995) with the geographical variables (e.g., ele­
vation, slope, other). Inverse distance weighting was 
used to define the spatial weights matrix. The kriging 
models were cross-validated to assess the variability in 
the prediction errors. The cross-validation included 
deleting one observation from the data set and predict­
ing the deleted observation using the remaining obser­
vations (Reich et al. 1999). This process was repeated 
for all observations in the data set. The final models 
(trend surface plus the kriged residuals) had R2 values 
ranging from 60% to 84%. In addition, the accuracies 
of the kriging models were assessed using the relative 
mean squared error suggested by Havesi et al. (1992). 
Figures 3 and 4 represent examples of predictive 

spatial statistical maps based on the trend surface 
model (OLS) and kriging (variogram) on total species 
richness distributions for total plant species and exotic 
plant species within the Cerro Grande fire site. The 
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information gained from integration of remotely 
sensed data, GIS, and field data is used to produce spa­
tial statistical maps of total plant diversity, in particu­
lar, of invasive species richness. Integrating spatial 
information technology permits predictive modeling 
on multiple scales with more focused and unbiased 
sampling designs (thus reducing cost). Consequently, 
natural resource management teams can utilize this as 
a cost-effective tool in identifying areas vulnerable to 
exotic plant species invasion and increased potential 
for wildfire. The spatial map of one variable (e.g., 
number of native plants) can be used to predict addi­
tional spatial models (e.g., number of exotic plants) if 
there is a significant spatial cross-correlation. Figure 5 
is an example of the standard errors associated with 
predicting exotic plant species richness (map of uncer­
tainty). The figure shows that standard errors 
increased with distance from the sample points, as 
would be expected. The standard errors indicated sig­
nificant utility of the map of exotic plant species rich­
ness for directing future management activities. This 
technique of spatial mapping provides a unique way to 
describe landscape-scale wildfire patterns and may 
contribute to better management decisions. Adding 
more sampling points and examining ecological rela­
tionships (e.g., between vegetation and soil) may help 
to improve predictive spatial statistical models and 
their accuracy (i.e., error reductions). 

DISCUSSION 

Spatial relationships among fuels, wildfire severity, 
and post-fire invasion of exotic plant species can be 
investigated through linkage of multiphase sampling 
designs and multiscale nested sampling field plots, 
pre- and post-fire, and can be accomplished by inte­
grating remotely sensed data and GIS, with spatial sta­
tistical models. This technique provided useful infor­
mation and tools for describing landscape-scale pat­
terns of plant diversity within the Cerro Grande fire 
site. Current fire behavior models such as BEHAVE 
(Andrews 1986) and FARSITE (Finney 1998) were 
used to aid in predicting fire and subsequent mapping 
of probable scenarios of fire spread during a given 
time period. These models do not take advantage of 
remotely sensed data and utilized only forest stand 
parameters, fire behavior, a fuel model, and topo­
graphic (i.e., elevation, aspect, and slope) characteris­
tics. Using remote sensing data allows us to easily 
develop these layers and their characteristics. Satellite 
data and aerial photographs have been used to map 
vegetation characteristics and then assign fuel models 
to various vegetation classes (Kourtz 1977, Miller and 

Johnston 1985, Wilson et al. 1994, Mark et al. 1995). 
The disadvantage of this approach is that the various 
components of vegetation (i.e., forest structure) are 
not always correlated with existing vegetation charac­
teristics because of past management activities and 
random disturbance in the form of individual tree or 
plant mortality (R.M. Reich, Colorado State Universi­
ty, personal communication). Thus, collecting inten­
sive fuel data and vegetation measurements using 
unbiased multiscale sampling within the forest land­
scape provide an excellent data source and input to 
spatial models similar to the one used in this paper. 
These spatial models provide unbiased estimates of 
the various components of forest fuels as well as esti­
mates of the prediction variance associated with indi­
vidual estimates. Also, the estimating spatial models 
are relatively more precise and accurate in terms of 
statistical components and properties than currently 
available fuel models, and are thus more useful to the 
forest decision-makers. Models covering such areas as 
the Cerro Grande site enable the spatial integration of 
fuel loading estimates to a wide range of spatial scales, 
along with estimates of the level of uncertainty. Final­
ly, these types of models can help natural resource 
management teams to minimize field assessment 
through use of multiphase sampling designs and mul­
tiscale nested plot designs. 

CONCLUSIONS 

The integration of remotely sensed data and GIS 
using spatial statistics provides useful information for 
describing large- and small-scale variability of land­
scape, as demonstrated at the Cerro Grande fire site. 
We used spatial statistical predictive models based on 
large- and small-scale variability to predict plant 
species richness of both native and exotic plant species 
(hot spots of diversity) and patterns of exotic plant 
invasions. The predicted standard errors for exotic 
species richness (Figure 5) are <40% of the mean 
number of exotic species per plot, even at the farthest 
distance from a sampled point. This indicates signifi­
cant utility of the map of exotic species richness for 
directing management activities because the error is 
relatively low. This error could be reduced when soil 
data, for example, become available and could add to 
future predictive models. 
Future research will use data (including additional 

variables of soil and vegetation) collected from small 
subplots (i.e., 1 m2). This will improve the accuracy of 
model predictions as well as advance the investiga­
tions of spatial auto-correlation and cross-correlation 
statistical patterns in landscape-scale assessments, 
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which are essential for the development of spatial sta­
tistical models for relations between vegetation and 
environmental variables (e.g., soil characteristics), 
fuel data, and wildfire severity at different levels. This 
will also help us to understand their spatial relation­
ships with respect to remotely sensed data at different 
scales of plot sizes (e.g., 1 m2, 10 m2, 100 m2, and 
1,000 m2) and improve the spatial model, since we will 
be able to capture more information about landscape-
scale patterns and variability. Finally, this new tech­
nique will help natural resource management teams to 
identify areas vulnerable to invasion by exotic plant 
species (hotspots of plant diversity) and predict their 
consequent potential for wildfire. 
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